If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+9u-11=0
a = 2; b = 9; c = -11;
Δ = b2-4ac
Δ = 92-4·2·(-11)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-13}{2*2}=\frac{-22}{4} =-5+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+13}{2*2}=\frac{4}{4} =1 $
| 4(3x+4)=-28 | | 20=y/5+17 | | z/2+4=6 | | 50-3x=5+2x | | 2x-4(x-5)=-2+5x-20 | | 7x-30=17x | | 30-3x=18+9x | | Y=2x^2+20x+40 | | 6+n+3=51 | | 37-x+2x-16+x+13=90 | | -96=10c+4 | | 2(4-x-6)=6x-4 | | y-7=1/4y+1/2 | | u-10/3=-19 | | 3+5.2x=1.28x | | t^2-16t=0 | | 7n-7=-6+2 | | 3a^2-9a-30=0 | | -1=4/3x+7 | | 8(c-2)+3=2+c-12 | | w/3+7=-5 | | -6x-40=-172 | | 7x^2+-32x-59=0 | | 3x-87=12 | | r/4+(-14)=-15 | | -2n=-(9-10n) | | 70=-8x-18 | | 46=4v+14 | | 0.75f+20=2.5f+12.25 | | 2d^2+17d+15=0 | | 6x+16+49=180 | | 130=4x+2 |